Những câu hỏi liên quan
Tú Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:26

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:31

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:33

e/ Chia 2 vế của BĐT ở câu c cho 9 ta được:

\(\frac{\left(a+b+c\right)^2}{9}\ge\frac{ab+bc+ca}{3}\)

Khai căn 2 vế: \(\Rightarrow\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}\)

f/ Áp dụng BĐT ở câu d:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)=abc\) (do \(a+b+c=1\))

Bình luận (0)
 Khách vãng lai đã xóa
Wang Soo Yi
Xem chi tiết
 Mashiro Shiina
12 tháng 4 2018 lúc 22:12

a) Áp dụng Cauchy-Schwarz:

\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)

b) Áp dụng AM-GM:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)

Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Bình luận (0)
kuroba kaito
12 tháng 4 2018 lúc 22:16

a)2(a2+b2) ≥ (a+b)2

⇔ 2a2+2b2 ≥ a2+2ab+b2

xét hiệu

⇔ 2a2+2b2-a2-2ab-b2 ≥ 0

⇔ a2-2ab+b2 ≥ 0

⇔ (a-b)2 ≥ 0 (luôn đúng )

=> đpcm

Bình luận (0)
nguyễn thị dương
12 tháng 4 2018 lúc 22:38

a )2(a^2+b^2)\(\ge\)(a+b)^2\(\Leftrightarrow\)2a^2+2b^2\(\ge\)a^2+b^2+2ab

\(\Leftrightarrow\)2a^2+2b^2-a^2-b^2-2ab\(\ge\)0

\(\Leftrightarrow\)(a-b)^2\(\ge\)0 (2)

(2) đúng nên 1 đúng

b )

chứng minh vế 1 3(a^2+b^2+c^2)\(\ge\)(a+b+c)^2

\(\Leftrightarrow\)3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\(\ge\)0

\(\Leftrightarrow\)2a^2+2b^2+2c^2-2ab-2ac-2bc\(\ge\)0

\(\Leftrightarrow\)(a-b)^2+(b-c)^2+(c-a)^2\(\ge\)0 luôn đúng

chứng minh vế 2 (a+b+c)^2\(\ge\)3(ab+bc+ca)

\(\Leftrightarrow\)a^2+b^2+c^2-2ab-2ac-2bc\(\ge\)0

cm như trên suy ra đpcm

Bình luận (0)
Hoàng
Xem chi tiết
Phú Thái
Xem chi tiết
Akai Haruma
28 tháng 12 2018 lúc 13:51

Bài 1:

(a)

Vì $a,b,c$ là độ dài ba cạnh tam giác nên theo BĐT tam giác ta có:

\(\left\{\begin{matrix} a+b>c\\ b+c>a\\ c+a>b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c(a+b)>c^2\\ a(b+c)>a^2\\ b(c+a)>b^2\end{matrix}\right.\)

\(\Rightarrow c(a+b)+a(b+c)+b(c+a)> c^2+a^2+b^2\)

\(\Leftrightarrow 2(ab+bc+ac)> a^2+b^2+c^2\)

Ta có đpcm.

(2): Bài này có nhiều cách giải. Nhưng mình xin đưa ra cách làm thuần túy Cô-si nhất.

Đặt

\((a+b-c, b+c-a, c+a-b)=(x,y,z)\Rightarrow (a,b,c)=(\frac{x+z}{2}; \frac{x+y}{2}; \frac{y+z}{2})\)

Khi đó:

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)

\(=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\geq 6\sqrt[6]{\frac{1}{2^6}}=3\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

(c):

Theo BĐT tam giác:

\(b+c>a\Rightarrow 2(b+c)> b+c+a\Rightarrow b+c> \frac{a+b+c}{2}\)

\(\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}\)

Hoàn toàn tương tự với những phân thức còn lại và cộng theo vế:

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

Bình luận (0)
Akai Haruma
28 tháng 12 2018 lúc 13:54

Bài 2:

Áp dụng BĐT Cô-si cho các số dương:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^2.b^2.c^2.d^2.ab.cd}=6\sqrt[6]{(abcd)^3}=6\sqrt[6]{1^3}=6\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2=c^2=d^2=ab=cd\\ abcd=1\end{matrix}\right.\Rightarrow a=b=c=d=1\)

Bình luận (0)
Akai Haruma
28 tháng 12 2018 lúc 13:56

Bài 3:

Ta có:

\((x-1)(x-3)(x-4)(x-6)+9\)

\(=[(x-1)(x-6)][(x-3)(x-4)]+9\)

\(=(x^2-7x+6)(x^2-7x+12)+9\)

\(=a(a+6)+9\) (đặt \(x^2-7x+6=a\) )

\(=a^2+6a+9=(a+3)^2\geq 0, \forall a\in\mathbb{R}\)

Ta có đpcm.

Bình luận (0)
phạm thảo
Xem chi tiết
Kuro Kazuya
17 tháng 5 2018 lúc 18:23

Bài 1

\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)

Áp dụng bđt Cauchy dạng phân thức

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c\)

Bình luận (0)
Kuro Kazuya
17 tháng 5 2018 lúc 18:48

Bài 2

\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)

Áp dụng bđt Bunhiacopxki ta có

\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)

\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)

Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

Áp dụng bđt Cauchy dạng phân thức ta có

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)

\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c\)

Bình luận (1)
Neet
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:38

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2021 lúc 15:43

Từ giả thiết:

\(a^2+b^2+c^2+a^2+b^2+c^2+2\left(ab+bc+ca\right)\le4\)

\(\Rightarrow a^2+b^2+c^2+ab+bc+ca\le2\)

Ta có:

\(\dfrac{ab+1}{\left(a+b\right)^2}=\dfrac{1}{2}.\dfrac{2ab+2}{\left(a+b\right)^2}\ge\dfrac{1}{2}.\dfrac{2ab+a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)^2}=\dfrac{1}{2}\dfrac{\left(a+b\right)^2+\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)

\(=\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)

Tương tự và cộng lại, đồng thời đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\):

\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{1}{2}\left(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\right)\ge\dfrac{3}{2}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{yz.xz.xy}{x^2y^2z^2}}=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
Trịnh Thị Kim Hồng
Xem chi tiết
Akai Haruma
30 tháng 12 2017 lúc 23:05

* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.

Câu a)

Theo hằng đẳng thức đáng nhớ ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)

\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)

\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)

\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)

Do đó:

\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

Câu b)

\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)

Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)

\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)

Mặt khác xét mẫu số:

\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)

\(=2(x^2+y^2+z^2+xy+yz-xz)\)

Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)

Câu c) Sử dụng kết quả (*) của phần a:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Và mẫu số:

\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)

Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)

Bình luận (0)
Akai Haruma
30 tháng 12 2017 lúc 23:17

Câu d)

Xét tử số:

\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)

\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)

\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)

\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)

\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)

Xét mẫu số:

\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)

\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)

\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)

\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)

\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)

\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)

\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)

Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)

Câu e)

Theo phần d ta có:

\(TS=(a-b)(b-c)(a-c)\)

\(MS=ab^2-ac^2-b^3+bc^2\)

\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)

Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)

Bình luận (1)